首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100233篇
  免费   9594篇
  国内免费   6681篇
电工技术   4490篇
技术理论   8篇
综合类   7286篇
化学工业   20606篇
金属工艺   7319篇
机械仪表   5877篇
建筑科学   4511篇
矿业工程   2864篇
能源动力   2811篇
轻工业   6577篇
水利工程   1554篇
石油天然气   3928篇
武器工业   802篇
无线电   12222篇
一般工业技术   12545篇
冶金工业   4018篇
原子能技术   1265篇
自动化技术   17825篇
  2024年   144篇
  2023年   1644篇
  2022年   2074篇
  2021年   3464篇
  2020年   3111篇
  2019年   2761篇
  2018年   2462篇
  2017年   3100篇
  2016年   3478篇
  2015年   3697篇
  2014年   5714篇
  2013年   5879篇
  2012年   6953篇
  2011年   8740篇
  2010年   6540篇
  2009年   7081篇
  2008年   6375篇
  2007年   7240篇
  2006年   6516篇
  2005年   5431篇
  2004年   4333篇
  2003年   3737篇
  2002年   2919篇
  2001年   2282篇
  2000年   1971篇
  1999年   1596篇
  1998年   1212篇
  1997年   949篇
  1996年   875篇
  1995年   751篇
  1994年   693篇
  1993年   549篇
  1992年   412篇
  1991年   342篇
  1990年   259篇
  1989年   219篇
  1988年   149篇
  1987年   113篇
  1986年   125篇
  1985年   77篇
  1984年   66篇
  1983年   61篇
  1982年   71篇
  1981年   46篇
  1980年   113篇
  1979年   42篇
  1978年   15篇
  1977年   27篇
  1976年   18篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Retrieving 3D shapes with 2D images has become a popular research area nowadays, and a great deal of work has been devoted to reducing the discrepancy between 3D shapes and 2D images to improve retrieval performance. However, most approaches ignore the semantic information and decision boundaries of the two domains, and cannot achieve both domain alignment and category alignment in one module. In this paper, a novel Collaborative Distribution Alignment (CDA) model is developed to address the above existing challenges. Specifically, we first adopt a dual-stream CNN, following a similarity guided constraint module, to generate discriminative embeddings for input 2D images and 3D shapes (described as multiple views). Subsequently, we explicitly introduce a joint domain-class alignment module to dynamically learn a class-discriminative and domain-agnostic feature space, which can narrow the distance between 2D image and 3D shape instances of the same underlying category, while pushing apart the instances from different categories. Furthermore, we apply a decision boundary refinement module to avoid generating class-ambiguity embeddings by dynamically adjusting inconsistencies between two discriminators. Extensive experiments and evaluations on two challenging benchmarks, MI3DOR and MI3DOR-2, demonstrate the superiority of the proposed CDA method for 2D image-based 3D shape retrieval task.  相似文献   
2.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
3.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   
4.
With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of material properties can be elicited from cellular solids, also known as metamaterials, architected foams, programmable materials, or lattice structures. Metamaterials are designed and optimized under the assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real lattices contain thousands or even millions of complex features, each with imperfections in shape and material constituency. While the role of these defects on the mean properties of metamaterials has been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial next step for high reliability aerospace or biomedical applications. In this work we show that it is precisely the large quantity of features that serves to homogenize the heterogeneities of the individual features, thereby reducing the variability of the collective structure and achieving effective properties that can be even more consistent than the monolithic base material. In this first statistical study of additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative densities. The variability in yield strength and modulus was observed to exponentially decrease with feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic model or a finite element beam model. The latter provides an efficient pathway to extend the current concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the homogenizing benefit of lattices, but also provide governing design principles that can be used to mitigate manufacturing inconsistencies via topological design.  相似文献   
5.
6.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
7.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
8.
In the present investigation, systematic grinding experiments were conducted in a laboratory ball mill to determine the breakage properties of low-grade PGE bearing chromite ore. The population balance modeling technique was used to study the breakage parameters such as primary breakage distribution (Bi, j) and the specific rates of breakage (Si). The breakage and selection function values were determined for six feed sizes. The results stated that the breakage follows the first-order grinding kinetics for all the feed sizes. It was observed that the coarser feed sizes exhibit higher selection function values than the finer feed size. Further, an artificial neural network was used to predict breakage characteristics of low-grade PGE bearing chromite ore. The predicted results obtained from the neural network modeling were close to the experimental results with a correlation of determination R2 = 0.99 for both product size and selection function.  相似文献   
9.
为了解破碎围岩分别采用锚杆支护、锚喷支护以及锚喷+锚索耦合三种支护方式下的支护效果,进而为破碎围岩巷道选择合理的支护方式提供参考。通过借助FLAC3D软件建立数值模型,分析不同支护条件下的破碎围岩巷道位移量、应力分布以及塑性区的时空演化特征。结果表明,采用锚喷+锚索耦合支护时,可以较好的控制巷道围岩的位移量、减小应力集中效应、缩小塑性区的影响范围。  相似文献   
10.
Internal stability assessment of geosynthetic-reinforced soil structures (GRSSs) has been commonly carried out assuming plane-strain conditions and dry backfills. However, failures of GRSSs usually show three-dimensional (3D) features and occur under unsaturated conditions. A procedure based on the kinematic limit-analysis method is proposed herein to assess 3D effects and the role of steady unsaturated infiltration on the required geosynthetic strength for GRSSs. A suction stress-based framework is used to describe the soil stress behavior under steady unsaturated infiltration. Based on the principle of energy-work balance, the required geosynthetic strength is determined. A comparison analysis with the prior research is conducted to verify the developed method. Two kinds of backfills, i.e., high-quality backfill and marginal backfill, are considered for comparison in this work. It is shown that accounting for 3D effects and the role of unsaturated infiltration considerably reduces the required geosynthetic strength. The 3D effects are primarily affected by the width-to-height ratio of GRSSs, and the contribution of unsaturated infiltration is mainly influenced by the soil type, flow rate, GRSS's height, and location of the water table.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号